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Abstract. We present a simple method which enables us to identify the occurence of a forward glory in
heavy ion scattering data. The method is successfully applied to the elastic scattering data of 12C (65
MeV), 13C (60 MeV), 15N (85 MeV) and 16O (75 MeV) on 28Si.

PACS. 25.70.-Z Low and intermediate energy heavy-ion reactions – 25.60.Bx Elastic Scattering – 24.10.Ht
Optical and diffraction models

The determination of the near-forward nuclear amplitude
from the experimental data, in a model independent way,
is an interesting current subject in nucleus-nucleus colli-
sions because it allows to identify the occurence of glory
scattering, a characteristic feature of surface refraction.
This nuclear amplitude has been obtained from the “sum
of difference” (SOD) method which is based on a modified
version [1] of the generalized optical theorem [2], [3]. As
“experimental input”, the SOD method uses the “sum of
difference” cross section σSOD(θ) given by the integral of
the difference between the measured elastic cross-section
dσ
dΩ and the Rutherford one dσR

dΩ , in the angular range
(θ, π). As σSOD(θ) should cover the near forward direc-
tion, the method requires the measure of dσ

dΩ in almost the
whole angular range. In addition, as dσ

dΩ is known only at
a sequence of discrete angles, interpolation is necessary to
evaluate the integral.

These being, the purpose of this paper is to present
a method, alternative to the SOD method, in which the
nuclear amplitude is obtained directly from the knowledge
of dσ

dΩ in the restricted angular range where the forward
glory takes place. So, let us consider the elastic scattering
between two nuclei and write dσ

dΩ in the form:

dσ

dΩ
= |fn(θ)|2 +

dσR
dΩ

+ 2|fn(θ)|
√
dσR
dΩ

cos (φn − φc) (1)

where fn(θ) and φn are usually called the nuclear ampli-
tude and the nuclear phase respectively [1], [4] although
they retain of course a coulomb potential dependance. The
phase φc is the coulomb phase given by

φc = π − 2η ln(sin
θ

2
) + 2σ0 (2)

σ0 and η = Z1Z2e2

h̄v are respectively the s-wave coulomb
phase shift and the Sommerfeld parameter.

For large η, the angular range where glory effects oc-
cur, is such that |fn(θ)|2 is negligibly small compared with
both dσR

dΩ and the interference term in (1). So, ignoring
|fn(θ)|2, the expression (1) can be rewritten in the form:

1
2

√
dσR
dΩ

(
dσ

dσR
− 1) = |fn(θ)| cos (φn − φc) (3)

which is expected to be accurate for η À 1 and small
scattering angles (θ ¿ θ rainbow).

So, the left hand side of (3) is the “experimental input”
of the present method. In the near forward direction, the
coulomb phase (2) varies rapidly and therefore the quan-

tity 1
2

√
dσR
dΩ ( dσ

dσR
− 1) oscillates with spacing δ ' πθ

η and
envelopes given by |fn(θ)|.

According to the semi-classical picture [5], these en-
velopes should behave like the Bessel function J0(lgθ)
where lg is the glory angular momentum, if a nuclear glory
occurs. As we shall see, such envelopes are easy to draw
providing dσ

dΩ is measured with sufficient accuracy and an-
gular resolution.

Before going into the application of the present method
to recent experimental data, let us first test the accuracy
of the approximate expression (3). To do that, we consider
the scattering of two nuclei and take for the left hand side
of (3) the numerical results of an optical model calcula-
tion which fits the existing data. Then one can compare

the envelope of the oscillations given by 1
2

√
dσR
dΩ ( dσ

dσR
− 1)

with the calculated curve |fn(θ)|. Further, to draw these
envelopes, the choice of the colliding nuclei as well as of
the incident energy, should be such that the period of the
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Fig. 1. Angular distribution of elastic scattering of 12C on
208Pb at EL = 96 MeV, from [6]. The solid line indicates the
results of the optical model calculation

fast oscillations, δ ' πθ
η , is small compared with the pe-

riod of the glory oscillations, δg ' π
lg

, in the small angle
region. The angle of the first glory minimum is given by
θmi ' 3π

4lg
. So, one can reasonably ask that δ ¿ δg for

θ ' θmi. This gives η À (∼ 2) which is consistent with
the condition for neglecting |fn(θ)|2 in (1).

So, let us consider the elastic scattering of 12C on 208Pb
at E = 96MeV. Figure 1 shows the experimental data as
well as the optical model fit obtained with a Woods-Saxon
potential whose parameters are [6]:

V0 = 40MeV,W0 = 25MeV,
rv = rw = 1.201fm, av = aw = .664fm (4)

This example, for which η = 27.4, has been selected for
its didactic value [7] since the effect we want to discuss
is clearly evidenced in the calculations even if the fast
oscillations given by (3) may be hard to resolve experi-

mentaly. The calculated values of 1
2

√
dσR
dΩ ( dσ

dσR
− 1) using

for the θ-axis a linear and a log. scale, are shown by solid
lines in Figures 2 and 3 respectively. The calculated values
of |fn(θ)| are shown by the broken lines. The dashed line
is a plot of |fn(0)||J0(lgθ)| using for lg the value lg = 47
obtained from the classical deflection function calculated
with the real part of the potential (4). As seen in Fig. 2,
the “exact” curve |fn(θ)| represents the envelope of the
oscillations given by the left hand side of the approximate
expression (3) over a very broad angular range outside
the near forward direction. The points have been obtained
taking for dσ

dΩ the experimental values of Fig. 1.
Figure 3 allows us to analyse the small angle region

in more detail. The comparaison between the two curves
|fn(θ)| and |fn(0)||J0(lgθ)| in the angular range θ ≤ 10◦
allows us to conclude unambigously that the Woods-Saxon
potential (4) gives rise to a net forward glory.

Let us now consider the application of the method to
the experimental data [8] obtained in the elastic scattering

Fig. 2. Elastic scattering of 12C on 208Pb. Calculated values :

1
2

√
dσR
dΩ

( dσ
dσR
− 1) (solid line), |fn(θ)| (broken line) and |fn(0)|

|J0(lgθ)| (dashed line). The points have been obtained taking
for dσ

dΩ
the experimental values of Fig. 1 (see text)

Fig. 3. The same as for Fig. 2, using a log. scale for the θ-axis

of 12C (65 MeV), 13C (60 MeV), 15N (85 MeV) and 16O
(75 MeV) on 28Si. An example of the measured ratio dσ

dσR

is shown in Fig. 4 for 12C +28 Si (65 MeV). The points in

the Figures 5, 6, 7 and 8 are the plot of 1
2

√
dσR
dΩ ( dσ

dσR
− 1)

using for dσ
dΩ the measured values. In order to analyse these

plots, we have first drawn the broken curves through the
points that allows us to localize approximatively the ex-
trema of the fast oscillations. The period of these oscil-
lations is quite accurately given by δ ' πθ

η . One imme-
diately remarks that, in all the cases, the way in which
the amplitude of the successive extrema varies, is clearly
reminiscent of a glory pattern. Such a behavior emerges
even more clearly by finding two parameters |fn(0)| and
lg such that |fn(0)||J0(lgθ)| envelopes the fast oscillations.
Moreover, as a pure J0(lgθ) behavior should hold only at
very small angles, these parameters have been obtained by
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Fig. 4. Elastic scattering angular distribution of 12C on 28Si
at EL = 65 MeV, from [8]

Fig. 5. Elastic scattering of 12C on 28Si (EL = 65 MeV). The

points are the plot of 1
2

√
dσR
dΩ

( dσ
dσR
− 1) as a function of θ (log.

scale) using for dσ
dΩ

the experimental data. The broken line has
been drawn through the points to localize the extrema of the
fast oscillations. The solid line has been obtained by searching
the parameters |fn(0)| and lg such that |fn(0)||J0(lgθ)| envelopes
the rapid oscillations (see text)

taking into account only the extrema for which the enve-
lope corresponds to the forward glory maximum, i.e. those
contained in the angular range θ ≤ 4◦, for all the cases.

The result one obtains is given by the solid curve, with
|fn(0)| and lg given in Table I together with the values
(|fn(0)|, lg)SOD obtained in reference [8] using the “sum
of difference” method. This curve shows clearly the pro-
nounced forward rise as well as the first maximum of the
J0 Bessel function, i.e. the fingerprint of the glory effect,
reflecting the importance of surface refraction.

The difference in the (|fn(0)|, lg) values (reported in
Table I) obtained with the present method and with the
SOD-method appeals two remarks:

Fig. 6. Same as for Fig. 5 for the elastic scattering of 13C on
28Si (EL = 60 MeV)

Fig. 7. Same as for Fig. 5 for the elastic scattering of 15N on
28Si (EL = 85 MeV)

Fig. 8. Same as for Fig. 5 for the elastic scattering of 16O on
28Si (EL = 75 MeV)
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Table 1. Numerical results obtained for |fn(0)| and lg.The val-
ues |fn(0)|(SOD) and lg(SOD) are also reported, see reference
[8]

projectile EL η |fn(0)| lg |fn(0)| lg
(MeV) (fm) (SOD) (SOD)

12C 65 5.68 22 28 10 30
13C 60 6.16 33 30 21 30
15N 85 6.26 50 34 48 40
16O 75 8.14 43 32 35 45

i) Both methods require the drawing of the envelope of
very fast oscillations, but these oscillations are obtained
from the elastic data in a quite different way. In the SOD
method, each value of σSOD(θ) results from the integration
of dσ/dΩ in the range (θ, π) and requires in addition an in-
terpolation procedure [see ref [8]]. In the present method,
the fast oscillations are given by the expressions (3) in
which the experimental input is the measured dσ/dΩ it-
self.

ii) At present, the only available data in the most near
forward direction are those of ref [8]. More accurate mea-
surements are therefore required in this angular range to
improve the determination of |fn(0)|.

In summary, the forward glory scattering phenomenon
is well identified in the reported heavy ion scattering data.
This has be done by using the angular dependence of the

quantity 1
2

√
dσR
dΩ ( dσ

dσR
− 1) which requires the knowledge

of the scattering cross-section in the near forward angular
range.

It would be interesting to have more experimental data
at near forward angles particularly with neutron halo nu-
clei as this has been suggested by several authors [9]. In
fact, the particular behavior of scattering with a neutron
halo nucleus is related to the extended matter distribution
of the halo which stretch the range of the effective nuclear
force to a long distance as well as to deeper absorption

due to the weak binding energy of the neutrons in the
halo.

The identification of a forward nuclear glory and the
determination of the nuclear amplitude |fn(θ)| could help
to understand how the refractive effects due to the exten-
sion of the nuclear force and to the absorption (imaginary
part of the potential) are playing a special role in the case
of neutron halo nuclei.
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